4.7 Article

Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis

期刊

BLOOD
卷 104, 期 1, 页码 11-18

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2003-09-3363

关键词

-

资金

  1. NIA NIH HHS [P60 AG-10415] Funding Source: Medline
  2. NIGMS NIH HHS [GM-57719, GM-18241] Funding Source: Medline

向作者/读者索取更多资源

The alternatively spliced and highly conserved EIIIA domain of fibronectin (FN) is included in most FIN of the extracellular matrix in embryos. In adults, both extracellular matrix and plasma FN essentially lack EIIIA. In diverse inflammatory situations however, EIIIA is specifically included by regulated RNA splicing. In atherosclerotic lesions, FN, including the EIIIA domain (EIIIA-FN), is abundant, whereas FN in the flanking vessel wall lacks EIIIA. Lesional EIIIA-FN is localized with endothelial cells and macrophage foam cells. To directly test the function of EIIIA-FN, we generated EIIIA-null (EIIIA(-/-)) mice that lack the EIIIA exon and crossed them with apolipoprotein E (ApoE)-null (ApoE(-/-)) mice that develop arterial wall lesions. Compared with ApoE(-/-) controls, EIIIA(-/-)ApoE(-/-) mice had significantly smaller lesions throughout the aortic tree. EIIIA-FN was increased in ApoE(-/-) plasma, and total plasma cholesterol was reduced in EIIIA(-/-)ApoE(-/-) mice, specifically in large lipoprotein particles, suggesting a functional role for plasma EIIIA-FN. To assess a role for macrophage EIIIA-FN in the vessel wall, we conducted in vitro foam cell assays. EIIIA(-/-)ApoE(-/-) macrophages accumulated significantly less intracellular lipid than control ApoE(-/-) cells. These results provide genetic evidence that suggests roles for EIIIA-FN in plasma lipoprotein metabolism and in foam cell formation. (C) 2004 by The American Society of Hematology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据