4.6 Article

Resetting chemical clocks of hot cores based on S-bearing molecules

期刊

ASTRONOMY & ASTROPHYSICS
卷 422, 期 1, 页码 159-169

出版社

E D P SCIENCES
DOI: 10.1051/0004-6361:20047186

关键词

ISM : abundances; ISM : molecules; stars : formation; astrochemistry

向作者/读者索取更多资源

We report a theoretical study of sulphur chemistry, as applied to hot cores, where S-bearing molecular ratios have been previously proposed and used as chemical clocks. As in previous models, we follow the S-bearing molecular composition after the injection of grain mantle components into the gas phase. For this study, we developed a time-dependent chemical model with up-to-date reaction rate coefficients. We ran several cases, using different realistic chemical compositions for the grain mantles and for the gas prior to mantle evaporation. The modeling shows that S-bearing molecular ratios depend very critically on the gas temperature and density, the abundance of atomic oxygen, and, most importantly, on the form of sulphur injected in the gas phase, which is very poorly known. Consequently, ratios of S-bearing molecules cannot be easily used as chemical clocks. However, detailed observations and careful modeling of both physical and chemical structure can give hints on the source age and constrain the mantle composition (i.e. the form of sulphur in cold molecular clouds) and, thus, help to solve the mystery of the sulphur depletion. We analyse in detail the cases of Orion and IRAS 16293-2422. The comparison of the available observations with our model suggests that the majority of sulphur released from the mantles is mainly in, or soon converted into, atomic form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据