4.7 Article

The effect of pioglitazone on peroxisome proliferator-activated receptor-γ target genes related to lipid storage in vivo

期刊

DIABETES CARE
卷 27, 期 7, 页码 1660-1667

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diacare.27.7.1660

关键词

-

向作者/读者索取更多资源

OBJECTIVE - Pioglitazone is a member of the thiazolidinediones (TZDs), insulin-sensitizing agents used to treat type 2 diabetes, The aim of this study was to define the effect of pioglitazone on the expression of genes related to carbohydrate and lipid metabolism in subcutaneous fat obtained from type 2 diabetic patients. RESEARCH DESIGN AND METHODS - Forty-eight volunteers with type 2 diabetes were divided into two groups treated for 12 weeks with placebo or pioglitazone (30 mg/day). The expression of several genes was quantified by real-time RT-PCR. RESULTS - Pioglitazone treatment increased the expression of genes involved in glycerol-3-phosphate synthesis. The mRNA expression of PEPCK-C and glycerol-3-phosphate dehydrogenase (GPDH) increased (P < 0.01) in patients treated with pioglitazone. There was no difference in glycerol kinase (GyK) mRNA levels. The expression of genes that regulate fatty acid availability in adipocytes, including lipoprotein lipase (LPL) and acetyl-CoA synthetase (ACS). was higher (P < 0.01) in pioglitazone-treated patients. Pioglitazone stimulated (P < 0.0001) expression of c-Cbl-associated protein (CAP), whereas tumor necrosis factor-alpha, leptin, resistin, angiopoietin like-4, and 11-beta-hydroxysteroid dehydrogenase type 1 (11beta HSD 1) were not affected by pioglitazone. The baseline peroxisome proliferator-activated receptor (PPAR)-gamma1 mRNA was significantly correlated with mRNA for LPL, CAP, ACS, 11beta HSD 1, GyK, Fatly acid synthase, leptin, and GPDH, whereas PPAR-gamma2 mRNA was correlated with CAP, PEPCK-C, leptin, and GPDH. CONCLUSIONS - Treatment with pioglitazone increased body weight, and this is associated with upregulation of some, but not all, genes previously demonstrated as TZD responsive in subcutaneous fat. The results suggest that TZDs might increase body weight through the upregulation of genes facilitating adipocyte lipid storage in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据