4.5 Article

Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1

期刊

GENE THERAPY
卷 11, 期 14, 页码 1170-1174

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302269

关键词

multidrug resistance; MDR1; siRNA; cancer

向作者/读者索取更多资源

Overexpression of P-glycoprotein, encoded by the MDR1 gene, confers multidrug resistance (MDR) on cancer cells and is a frequent impediment to successful chemotherapy. Recent developments in the use of small interfering RNAs to inhibit specific protein expression have highlighted their potential use as therapeutic agents. We have expressed two different short hairpin RNAs from stably integrated plasmids in doxorubicin-resistant K562 leukaemic cells. The MDR1-targeted RNA interference (RNAi) resulted in decreased MDR1 mRNA, abolished P-glycoprotein expression, and completely reversed the MDR phenotype to that of the drug-sensitive K562 parental line. This study demonstrates that MDR, which is solely due to overexpression of P-glycoprotein, can be reversed by RNAi. These target sequences can in the future be integrated into gene therapy vectors with potential clinical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据