4.7 Article

Colouration process of colloidal tungsten oxide nanoparticles in the presence of hydrogen gas

期刊

APPLIED SURFACE SCIENCE
卷 258, 期 24, 页码 10089-10094

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2012.06.081

关键词

Tungsten oxide nanoparticles; Laser ablation; Gasochromic; Optical absorption

向作者/读者索取更多资源

In this study, tungsten oxide nanoparticles were fabricated by pulsed laser ablation (PLA) of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.2 g/lit PdCl2 solution was added to activate the solution against the hydrogen gas. Dynamic light scattering and X-ray photoelectron spectroscopy were used to measure the average size and the surface chemical composition of the synthesized nanoparticles, respectively. The aim is to investigate the influence of hydrogen exposure time on colouration process of colloidal nanoparticles. According to optical measurements, hydrogen bubbling into the produced colloidal Pd-WO3 led to formation of several absorption peaks at similar to 1.26, similar to 1.6 and similar to 1.97 eV. We observed the appearance and growth of a peak at 1.6 eV at the initial stages of hydrogen exposure. However, two other peaks became dominant at long exposure times. The coloration process is reversible in the presence of oxygen gas. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据