4.7 Article

Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins

期刊

APPLIED SURFACE SCIENCE
卷 258, 期 24, 页码 9770-9781

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2012.06.028

关键词

Ultrafiltration; EPES; SEM; AFM; Antifouling

资金

  1. University Grants Commission (UGC), New Delhi, India [F. 34-355/2008 (SR)]

向作者/读者索取更多资源

Epoxidated polyethersulfone (EPES) incorporated cellulose acetate (CA) ultrafiltration membranes were prepared by diffusion induced precipitation technique in the absence and presence of pore former polyethyleneglycol-600. Effect of blend ratio on the compatibility, thermal stability, mechanical strength, hydrophilicity, morphology, pure water flux, protein adsorption resistance, protein separation efficiency and fouling propensity of the CA/EPES blend membranes was evaluated. Addition of EPES results in the formation of thin separating layer and spongy sub layer in CA/EPES blend membranes. The efficiency of these membranes in the separation of commercially important proteins such as bovine serum albumin, egg albumin, pepsin and trypsin was studied and found to be enhanced as compared to CA membranes. The fouling-resistant capability of the membranes was studied by bovine serum albumin as the model foulant and flux recovery ratio of the membranes were calculated. Attempts have been made to correlate the changes in membrane morphology with pure water flux, hydraulic resistance, thermal and mechanical stability, separation efficiency and antifouling property of the CA/EPES membranes. The optimal combination of CA and EPES, thus allows the preparation of high performance UF membranes which are sufficiently dense to retain proteins and at the same time give economically viable fluxes. (C) 2012 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据