4.7 Article

Role of flexibility in entanglement

期刊

PHYSICAL REVIEW E
卷 70, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.011803

关键词

-

向作者/读者索取更多资源

Entanglement is essential to the function of many physical systems. Flexibility and length determine the extent to which the system can become entangled. Given a perfectly flexible unit-radius tube, several researchers have studied the minimum length needed to tie different types of knots. Can one obtain the same configurations with less flexible tubing? Does more flexibility always yield tighter knots? We demonstrate a phase change in flexibility beyond which more flexibility adds very little entanglement. This level of flexibility is surprisingly low and appears to have a global bound. Since tensile strength and flexibility act inversely, this level of flexibility provides the maximal tensile strength for materials that need to pack tightly. This is a basic design principle that should be observable in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据