4.8 Article

Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton

向作者/读者索取更多资源

Many naturally occurring solids possess periodic structures that give rise to visible photonic crystal properties,([1]) commonly termed structural colors. Some stunning examples are butterfly wings (one-dimensional, 1D), ([2]) abalone shells (1D),([3]) sea-mouse spines (two-dimensional, 2D),([4]) and natural opals (three-dimensional, 3D).([5]) Exploitation of other periodic natural structures, is however limited by the inherently large size scale and the low dielectric contrast of the materials. Furthermore, these generally more complex geometries are a challenge to model correctly in order to obtain correct band diagrams. Here we report the development of a high fidelity cyclic size reduction and infiltration scheme, and apply it to a sea urchin exoskeleton to successfully fabricate a high dielectric contrast 3D photonic crystal exhibiting a stop band in the mid-IR range. The band structure of the exoskeleton is modeled using level set mathematics and agrees well with the experimental reflectivity exhibited by the 3D bicontinuous tellurium network of the replicated urchin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据