4.4 Article

Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition

期刊

BIOCHEMISTRY
卷 43, 期 26, 页码 8494-8502

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi049803f

关键词

-

资金

  1. NIA NIH HHS [R01 AG-16339] Funding Source: Medline

向作者/读者索取更多资源

Complex I, a key component of the mitochondrial respiratory chain, exhibits diminished activity as a result of cardiac ischemia/reperfusion. Cardiac ischemia/reperfusion is associated with increases in the levels of mitochondrial Ca2+ and pro-oxidants. In the current in vitro study, we sought evidence for a mechanistic link between Ca2+, pro-oxidants, and inhibition of complex I utilizing mitochondria isolated from rat heart. Our results indicate that addition of Ca2+ to solubilized mitochondria results in loss in complex I activity. Ca2+ induced a maximum decrease in complex I activity of approximately 35% at low micromolar concentrations over a narrow physiologically relevant pH range. Loss in activity required reducing equivalents in the form of NADH and was not reversed upon addition of EGTA. The antioxidants N-acetylcysteine and superoxide dismutase, but not catalase, prevented inhibition, indicating the involvement of superoxide anion (O-2(.-)) in the inactivation process. Importantly, the sulfhydryl reducing agent DTT was capable of fully restoring complex I activity implicating the formation of sulfenic acid and/or disulfide derivatives of cysteine in the inactivation process. Finally, complex I can reactivate endogenously upon Ca2+ removal if NADH is present and the enzyme is allowed to turnover catalytically. Thus, the present study provides a mechanistic link between three alterations known to occur during cardiac ischemia/reperfusion, mitochondrial Ca2+ accumulation, free radical production, and complex I inhibition. The reversibility of these processes suggests redox regulation of Ca2+ handling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据