4.7 Article

The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation

期刊

APPLIED SURFACE SCIENCE
卷 257, 期 6, 页码 2401-2410

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2010.09.110

关键词

Carbon nanotubes; Acid oxidation; X-ray photoelectron spectroscopy; Thermal analysis-mass spectrometry; Oxidation mechanism

资金

  1. National Science Council (NSC) of Taiwan [NSC 95-2221-E-155-017]

向作者/读者索取更多资源

Variation in the nature of multi-walled carbon nanotubes (MWCNTs) subjected to different degrees of oxidation was investigated. The microstructure was determined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) methods, and the surface chemistry was evaluated in terms of the functional groups determined by X-ray photoelectron spectroscopy (XPS) and thermal analysis-mass spectroscopy (TA-MS). In addition, TGA was used to indicate the thermal stability of the nanotubes. Results demonstrate that the graphitic structure of nanotubes oxidized with a mild mixture of H2SO4/HNO3 was preserved. Decrease in the degree of crystallinity started with widening of the C(0 0 2) XRD diffraction peak, followed by this peak shifting towards lower angles. The oxygen content increased with increasing treatment time. A defect peak incorporated in deconvolution of XPS C1s spectra was helpful for detecting the generation of defect sites. The predominant surface functionalities of the nanotubes have been changed from basic to acidic groups after treatment for one day. The samples oxidized for two days had the most abundant surface -COOH and the highest oxidation resistance. The oxidation mechanism of MWCNTs in mild H2SO4/HNO3 mixture was proposed, which was a successive and iterative process, including the initial attack on active sites, and next the hexagon electrophilic attack generating new defects and introducing more oxygen, and then the tubes becoming thinner and shorter. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据