4.7 Article

Mechanochemically conjugated PMHS/nano-SiO2 hybrid and subsequent optimum grafting density study

期刊

APPLIED SURFACE SCIENCE
卷 257, 期 21, 页码 9024-9032

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2011.05.093

关键词

Nano-SiO2; Hybrid particles; Surface modification; Mechanochemical

向作者/读者索取更多资源

In this paper, we reported the preparation of poly(methylhydrosiloxane) (PMHS)/SiO2 hybrid particles by mechanochemical method based on high energy ball milling (HEBM). The obtained hybrid particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, Si-29 CP (cross-polarization) MAS NMR, viscosity measurement, particle size distribution, thermal analysis (TGA, DSC and DTG), static contact angle (CA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). FT-IR and Si-29 CP MAS NMR spectra indicate that PMHS is chemically anchored onto the surface of nano-SiO2. Viscosity measurement, particle size distribution, FE-SEM and TEM demonstrate that an appropriate grafting density optimizes the dispersion of nanoparticles in poly(dimethylsiloxane) (PDMS) matrix, so lower viscosity can be achieved. Too high or too low grafting density may only achieve suboptimal and poor dispersions. The optimum grafting density of PMHS on nano-SiO2 was determined by thermal analysis, with approximately 0.0531 PMHS/nm(2). Static contact angle measurement indicates that the water contact angle of hybrid particles is modulated by changing the grafting density of PMHS on nano-SiO2. The CA value of PMHS/SiO2 hybrid with optimum grafting density is 139.4 degrees, and the highest CA value of PMHS/SiO2 hybrid is approximately 158.2 degrees. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据