4.7 Article

Monte Carlo simulations of antibody adsorption and orientation on charged surfaces

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 121, 期 2, 页码 1050-1057

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1757434

关键词

-

向作者/读者索取更多资源

Monte Carlo simulations were performed to study the adsorption and orientation of antibodies on charged surfaces based on both colloidal and all-atom models. The colloidal model antibody consists of 12 connected beads representing the 12 domains of an antibody molecule. The structure of the all-atom antibody model was taken from the protein databank. The effects of the surface charge sign and density, the solution pH and ionic strength on the adsorption and orientation of different colloidal model antibodies with different dipole moments were examined. Simulation results show that both the 12-bead and the all-atom models of the antibody, for which the dipole moment points from the F-c to (F-ab)(2) fragments, tend to have the desired end-on orientation on positively charged surfaces and undesired head-on orientation on negatively charged surfaces at high surface charge density and low solution ionic strength where electrostatic interactions dominate. At low surface charge density and high solution ionic strength where van der Waals interactions dominate, 12-bead model antibodies tend to have lying-flat orientation on surfaces. The orientation of adsorbed antibodies results from the compromise between electrostatic and van der Waals interactions. The dipole moment of an antibody is an important factor for antibody orientation on charged surfaces when electrostatic interactions dominate. This charge-driven protein orientation hypothesis was verified by our simulations results in this work. It was further confirmed by surface plasmon resonance biosensor and time-of-flight secondary ion mass spectrometry experiments reported elsewhere. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据