4.8 Article

The negative role of cyclin G in ATM-dependent p53 activation

期刊

ONCOGENE
卷 23, 期 31, 页码 5405-5408

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1207693

关键词

p53; cyclin G; ATM; cell cycle; DNA damage

资金

  1. NCI NIH HHS [CA85681, CA78356] Funding Source: Medline

向作者/读者索取更多资源

Cyclin G is one of the earliest p53 target genes to be identified, but its function in the p53 pathway has been elusive. Although the precise mechanisms of cyclin G in this novel network have not been explored, recent studies have demonstrated that cyclin G is a key regulator of the p53-Mdm2 network. Here we present evidence that cyclin G-mediated p53 regulation is dependent upon the status of ataxia-telangiectasia mutated (ATM) protein, which activates p53 in response to DNA damage. Abrogation of cyclin G enhances p53 accumulation and phosphorylation of p53 at the Ser-15 residue, resulting in cell cycle arrest. Ectopically expressed cyclin G significantly reduces the steady-state levels of p53 as well as that of phosphorylated p53 at Ser-15 after DNA damage in normal human dermal fibroblasts containing normal ATM. However, cyclin G does not cause similar reductions in p53 levels in ATM-mutated cells. We also show that translocation of cyclin G to the nucleus requires functional ATM. Thus, our findings identify a new role of cyclin G in ATM-dependent p53 regulation and in cell cycle regulation during DNA damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据