4.7 Article

Quantum mechanical models of the resting state of the vanadium-dependent haloperoxidase

期刊

INORGANIC CHEMISTRY
卷 43, 期 14, 页码 4127-4136

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic0353256

关键词

-

向作者/读者索取更多资源

Density functional theory has been used to investigate structural and electronic properties of complexes related to the resting form of the active site of vanadium haloperoxidase as a function of environment and protonation state. Results obtained by studying models of varying size and complexity highlight the influence of environment and protonation state on the structure and stability of the metal cofactor. The study shows that, in the trigonal bipyramidal active site, where one axial position is occupied by a key histidine, the trans position cannot contain a terminal oxo group. Further, a highly negatively charged vanadate unit is not stable. Protonation of at least one equatorial oxo ligand appears necessary to stabilize the metal cofactor. The study also indicates that, while at rest within the protein, the vanadate unit is most likely an anion with an axial hydroxide and an equatorial plane containing two oxos and a hydroxide. For the neutral, protonated state of the vanadate unit, there were two minima found. The first structure is characterized by an axial water with two oxo and one hydroxo group in the equatorial plane. The second structure contains an axial hydroxo group and an equatorial plane composed of one oxo and two hydroxo oxygen atoms. These two species are not significantly different in energy, indicating that either form may be important during the catalytic cycle. These data support the initial crystallographic assignment of an axially bound hydroxide, but an axial water is also a possibility. This study also shows that the protonation state of the vanadate ion is most likely greater than previously proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据