4.8 Article

Quantification of single fluid inclusions by combining synchrotron radiation-induced μ-X-ray fluorescence and transmission

期刊

ANALYTICAL CHEMISTRY
卷 76, 期 14, 页码 3988-3994

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac035533f

关键词

-

向作者/读者索取更多资源

Fluid inclusions represent the only direct samples of ancient fluids in many crustal rocks; precise knowledge of their chemical composition provides crucial information to model paleofluid-rock interactions and hydrothermal transport processes. Owing to its nondestructive character, micrometer-scale spatial resolution, and high sensitivity, synchrotron radiation-induced mu-X-ray fluorescence has received great interest for the in situ multielement analysis of individual fluid inclusions. Major uncertainties associated with the quantitative analysis of single fluid inclusions arise from the inclusion depth and the volume of fluid sampled by the incident beam. While the depth can be extracted directly from the fluorescence spectrum, its volume remains a major source of uncertainty. The present study performed on natural and synthetic inclusions shows that the inclusion thickness can be accurately evaluated from transmission line scans. Experimental data matched numerical simulations based on an elliptical inclusion geometry. However, for one nonelliptical inclusion, the experimental data were confirmed using a computed absorption tomography reconstruction. Good agreement between the imaging and scanning techniques implies that the latter provides reliable fluid thickness values independent of the shape of the inclusion. Taking into consideration the incident angle, the incident beam energy, the inclusion fluid salinity, and the transmission measurement stability resulted in errors of 0.3-2 mum on calculated fluid inclusion thicknesses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据