4.6 Article

Fault diagnosis based on Fisher discriminant analysis and support vector machines

期刊

COMPUTERS & CHEMICAL ENGINEERING
卷 28, 期 8, 页码 1389-1401

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2003.10.002

关键词

fault diagnosis; support vector machines; fisher discriminant analysis; classification

向作者/读者索取更多资源

The proficiencies of Fisher discriminant analysis (FDA), support vector machines (SVM), and proximal support vector machines (PSVM) for fault diagnosis (i.e. classification of multiple fault classes) are investigated. The Tennessee Eastman process (TEP) simulator was used to generate overlapping datasets to evaluate the classification performance. When all variables were used, the datasets were masked with irrelevant information, which resulted in poor classification. With key variables selected by genetic algorithms and the contribution charts, SVM and PSVM outperformed FDA and demonstrated the advantage of using nonlinear technique when data are overlapped. The overall misclassification for the testing data using FDA dropped from 38 to 18%; while those using SVM and PSVM dropped from 44-45 to 6%. The effectiveness of the proposed approach is increased in PSVM by saving significant computation time and memory requirement, while obtaining comparable classification results. For auto-correlated data, the incorporation of time lags into SVM and PSVM improved classification results. The added dimensions decreased the degree to which the data overlap and the overall misclassification for the testing set using SVM and PSVM decreased further to 3%. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据