4.7 Article

Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20

期刊

CLINICAL CANCER RESEARCH
卷 10, 期 14, 页码 4652-4660

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-03-0439

关键词

-

类别

资金

  1. NCI NIH HHS [CA30103, CA27469, CA37517, CA40570] Funding Source: Medline

向作者/读者索取更多资源

Purpose: Overexpression of multidrug resistance protein 1 (MRP1) confers resistance to a range of chemotherapeutic agents in cell lines and could be involved in clinical drug resistance of some tumor types also. We examined MRP1 expression in a small series of untreated human ovarian tumors and matched normal tissues. Experimental Design: We analyzed ten pairs of snap-frozen ovarian tumor and matched normal total ovarian tissues from the same patients for expression of MRP1 by reverse transcription-PCR. Amplified PCR products were sequenced to reveal splicing events of MRP1. MRP1 splice variants were expressed as enhanced green fluorescent fusion proteins in HEK293T cells to demonstrate their localization in the cell and their activity in conferring resistance to doxorubicin. The expression of splicing factors PTB and SRp20 was examined by Western blot. Results: MRP1 was expressed in all 10 of the pairs of specimens. Multiple MRP1 cDNA fragments of various sizes were amplified between exons 10 and 19. Of interest, more MRP1 cDNA fragments were detected in ovarian tumors than in matched normal tissues in 9 of 10 pairs. We identified 10 splicing forms between exons 10 and 19 of the MRP1 gene with exon skipping ranging from 1 to 7. Amplification of the entire coding region of MRP1 from 1 ovarian tumor revealed >20 splice variants. We found whole and partial exon skipping and partial intron inclusion in these splice variants. We expressed 3 of these MRP1 splice variants in HEK293T cells and found that they appeared to localize to the plasma membrane and were functional in conferring resistance to doxorubicin. In addition, we identified a few nucleotide variations in this gene. To understand the basis for increased splice variants in the tumors, we examined splicing factor expression in these tissues. Western blot analysis revealed that two splicing factors, PTB and SRp20, were overexpressed in most ovarian tumors compared with their matched normal ovarian tissues. Importantly, overexpression of both of these splicing factors was associated with the increased number of MRP1 splicing forms in the ovarian tissues. Conclusion: The MRP1 gene undergoes alternative splicing at a higher frequency in ovarian tumors than in matched normal tissues. Some of these splice variants confer resistance to doxorubicin. Expression of splicing factors PTB and SRp20 is strongly associated with the alternative splicing of the MRP1 gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据