4.8 Article

Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1

期刊

CANCER RESEARCH
卷 64, 期 14, 页码 4950-4956

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-04-0143

关键词

-

类别

资金

  1. NCI NIH HHS [CA 89078] Funding Source: Medline

向作者/读者索取更多资源

This study demonstrates that verapamil and a newly synthesized verapamil derivative, NMeOHI2, behave as apoptogens in multidrug resistance protein I (MRP1)-expressing cells. When treated with either verapamil or NMeOHI2, surprisingly, baby hamster kidney-21 (BHK) cells transfected with human MRP1 were killed. Because parental BHK cells were not, as well as cells expressing an inactive (K1333L) MRP1 mutant, this indicated that cell death involved functional MRP1 transporter. Cell death was identified as apoptosis by using annexin V-fluorescein labeling and was no longer observed in the presence of the caspase inhibitor Z-Val-Ala-Asp(OMe)-CH2F (Z-VAD-FMK). In vitro, both verapamil and its derivative inhibited leukotriene C4 transport by MRP1-enriched membrane vesicles in a competitive manner, with a K-i of 48.6 mum for verapamil and 5.5 mum for NMeOHI2, and stimulated reduced glutathione (GSH) transport 3-fold and 9-fold, respectively. Treatment of MRP1-expressing cells with either verapamil or the derivative quickly depleted intracellular GSH content with a strong decrease occurring in the first hour of treatment, which preceded cell death beginning at 8-16 h. Furthermore, addition of GSH to the media efficiently prevented cell death. Therefore, verapamil and its derivative trigger apoptosis through stimulation of GSH extrusion mediated by MRP1. This new information on the mechanism of induced apoptosis of MDR cells may represent a novel approach in the selective treatment of MRP1-positive tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据