4.6 Article

Global defects in the expression and function of the low density lipoprotein receptor (LDLR) associated with two familial hypercholesterolemia mutations resulting in misfolding of the LDLR epidermal growth factor-AB pair

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 29, 页码 30611-30621

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401412200

关键词

-

资金

  1. NHLBI NIH HHS [HL-61001] Funding Source: Medline

向作者/读者索取更多资源

The low density lipoprotein (LDL) receptor is a modular protein involved in the endocytosis of cholesterol-rich lipoproteins from the circulation. Mutations to the receptor result in familial hypercholesterolemia, and over 60 of these occur in the calcium-binding epidermal growth factor-like domain pair. Two selected mutations in this region (G322S and R329P) were introduced into the domain pair and analyzed by in vitro refolding. Both exhibited differing levels of protein misfolding with R329P being the most pronounced. Solution NMR studies of the mutant domain pairs after purification established that a fraction of protein maintains a native-like fold and that this fraction contains two intact calcium-binding sites. An in vivo analysis of intact receptors containing these binding sites showed significantly reduced cell-surface expression compared with the native LDL receptor levels, again with R329P showing the most severe decrease. The sum of these results suggests that either local changes in structure or domain misfolding may be associated with the mutations. There is also the possibility that the misfolding of the calcium-binding epidermal growth factor-like pair region is propagated to other regions of the intact receptor, resulting in more global defects. Surprisingly, for both mutants, those full-length receptors that fold and reach the cell surface retain the ability to bind LDL and release the ligand upon exposure to low pH. This analysis provides significant insight into the protein defect resulting from each of the two mutations and allows their classification to be 2B (partially transport-defective). The results also highlight a range of misfolding defects that may be associated with familial hypercholesterolemia and may enable the prediction of the consequences of homologous disease-causing mutations to other proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据