4.8 Article

Target of rapamycin-mediated amino acid signaling in mosquito anautogeny

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0403460101

关键词

-

资金

  1. NIAID NIH HHS [R37 AI024716, 2R37 AI24716] Funding Source: Medline

向作者/读者索取更多资源

Mosquitoes generate an enormous burden on human health worldwide. Disease-transmitting species use a reproductive strategy, termed anautogeny, that requires a blood meal to initiate egg maturation. Whereas this strategy is important for driving disease transmission, the molecular mechanisms underlying this phenomenon are still poorly understood. The production of yolk protein precursors (YPPs), a central event in egg maturation, is called vitellogenesis. YPPs are synthesized in the fat body, the insect analogue of the vertebrate liver. Mosquito vitellogenesis is regulated by the steroid hormone 20 hydroxyecdysone (20E). However, 20E alone is not capable of activating vitellogenesis in vivo. Here, we report that amino acid signaling through the nutrient-sensitive target of rapamycin (TOR) pathway is essential for the activation of YPP gene expression. An increase in extracellular amino acid levels, similar to the increase observed after a blood meal, is critical for 20E stimulation of YPP gene expression. Treatment with the TOR kinase inhibitor rapamycin significantly inhibits YPP expression. We used RNA interference to knockdown the expression of two key proteins of the TOR signaling pathway, TOR, and tuberous sclerosis complex 2. Knockdown of TOR inhibited amino acid stimulation while knockdown of tuberous sclerosis complex 2, a negative regulator of TOR signaling, resulted in enhanced YPP expression. Thus, amino acid-based TOR signaling regulates the activation of egg development after a blood meal, an adaptation to the unique life style of mosquitoes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据