4.6 Article

Enabling multienzyme biocatalysis using nanoporous materials

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 87, 期 2, 页码 178-183

出版社

WILEY
DOI: 10.1002/bit.20131

关键词

multienzyme; biocatalysis; nanoporous; silica glass; cofactor regeneration; nanoparticles

向作者/读者索取更多资源

Multistep reactions catalyzed by a covalently immobilized enzyme-cofactor-enzyme system were achieved. Lactate dehydrogenase (LDH), glucose dehydrogenase (GDH), and cofactor NADH were incorporated into two porous silica glass supports. One of the glass supports had pores of 30 nm in diameter, while the other was of 100-nm pore size. Effective shuttling of the covalently bound NADH between LDH and GDH was achieved, such that regeneration cycles of NADH/NAD(+) were observed. The glass of 30-nm pore size afforded enzyme activities that were about twice those observed for the glass of 100-nm pore size, indicating the former provided better enzyme-cofactor integration. The effect of the size of spacers was also examined. The use of longer spacers increased the reaction rates by = 18 times as compared to those achieved with glutaraldehyde linkage. It appeared that the concave configuration of the nanopores played an important role in enabling the multistep reactions. The same multienzyme system immobilized on nonporous polystyrene particles of 500-nm diameter was only = 2% active as the glass-supported system. It is believed that the nanoporous structure of the glass supports enhances the molecular interactions among the immobilized enzymes and cofactor, thus improving the catalytic efficiency of the system. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据