4.7 Article

Cranial mechanics and feeding in Tyrannosaurus rex

期刊

出版社

ROYAL SOC
DOI: 10.1098/rspb.2004.2755

关键词

finite element method; Tyrannosaurus; dinosauria; theropoda; feeding; kinesis

向作者/读者索取更多资源

It has been suggested that the large theropod dinosaur Tyrannosaurus rex was capable of producing extremely powerful bite forces and resisting multi-directional loading generated during feeding. Contrary to this suggestion is the observation that the cranium is composed of often loosely articulated facial bones, although these bones may have performed a shock-absorption role. The structural analysis technique finite element analysis (FEA) is employed here to investigate the functional morphology and cranial mechanics of the T. rex skull. In particular, I test whether the skull is optimized for the resistance of large bi-directional feeding loads, whether mobile joints are adapted for the localized resistance of feeding-induced stress and strain, and whether mobile joints act to weaken or strengthen the skull overall. The results demonstrate that the cranium is equally adapted to resist biting or tearing forces and therefore the 'puncture-pull' feeding hypothesis is well supported. Finite-element-generated stress-strain patterns are consistent with T. rex cranial morphology: the maxilla-jugal suture provides a tensile shock-absorbing function that reduces localized tension yet 'weakens' the skull overall. Furthermore, peak compressive and shear stresses localize in the nasals rather than the fronto-parietal region as seen in Allosaurus, offering a reason why robusticity is commonplace in tyrannosaurid nasals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据