4.7 Article

Intermolecular interaction in an open-shell π-bound cationic complex:: IR spectrum and coupled cluster calculations for C2H2+-Ar

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 121, 期 4, 页码 1744-1753

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1765091

关键词

-

向作者/读者索取更多资源

The intermolecular potential energy surface (PES.) of Ar interacting with the acetylene cation in its (2)Pi(u) ground electronic state is characterized by infrared photodissociation (IRPD) spectroscopy and quantum chemical calculations. In agreement with the theoretical predictions, the rovibrational,analysis of the IRPD spectrum of C2H2+-Ar recorded in the vicinity of the antisymmetric CH stretching fundamental (v(3)) is consistent with a vibrationally averaged T-shaped structure and a ground-state center-of-mass separation of R-c.m. = 2.86 +/- 0.09 Angstrom. The v(3) band experiences a blueshift of 16.7 cm(-1) upon complexation, indicating that vibrational excitation slightly reduces the interaction strength. The two-dimensional intermolecular PES of C2H2+-Ar, obtained from coupled cluster calculations with a large basis set, features strong angular-radial coupling and supports in addition to a global pi-bound minimum also two shallow side wells with linear H-bound geometries. Bound state rovibrational, energy level calculations are carried out for rotational angular momentum J=0-10 (both parities) employing a discrete variable representation-distributed Gaussian basis method. Effective spectroscopic constants are determined for the vibrational ground state by fitting the calculated rotational energies to the standard Watson A-type. Hamiltonian for a slightly asymmetric prolate top. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据