4.5 Article

Molecular dynamics simulations of intercalated poly(ε-caprolactone)-montmorillonite clay nanocomposites

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 108, 期 30, 页码 10678-10686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0493069

关键词

-

向作者/读者索取更多资源

The structure and energetics of poly(c-caprolactone), PCL, chains confined between two platelets of organo-modified montmorillonite clay, are investigated using molecular dynamics techniques. The amount of PCL in the clay gallery has been systematically varied to assess the influence of the interlayer density on the molecular organization. The structural characteristics are examined in terms of interlayer density profiles, radial distribution functions, and dihedral angle distributions. The results show that the interlayer phase organizes into four layers, along with an enhancement of the proportion of extended zigzag chain conformations, with respect to the amorphous polymer bulk. Calculations of the interaction energies between the various subsystems (the PCL chains, the surfactant molecules, and the clay surfaces) clearly show the formation of polar as well as apolar interactions between PCL and the clay surfaces, which can significantly contribute to the polymer intercalation (in addition to the polymer-surfactant interactions).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据