4.6 Article

Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 31, 页码 32950-32956

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M404536200

关键词

-

向作者/读者索取更多资源

The cyclobutane pyrimidine dimer (CPD) is one of the major forms of DNA damage caused by irradiation with ultraviolet (UV) light. CPD photolyases recognize and repair UV-damaged DNA. The DNA recognition mechanism of the CPD photolyase has remained obscure because of a lack of structural information about DNA-CPD photolyase complexes. In order to elucidate the CPD photolyase DNA binding mode, we performed NMR analyses of the DNA-CPD photolyase complex. Based upon results from P-31 NMR measurements, in combination with site-directed mutagenesis, we have demonstrated the orientation of CPD-containing single-stranded DNA (ssDNA) on the CPD photolyase. In addition, chemical shift perturbation analyses, using stable isotope-labeled DNA, revealed that the CPD is buried in a cavity within CPD photolyase. Finally, NMR analyses of a double-stranded DNA (dsDNA)-CPD photolyase complex indicated that the CPD is flipped out of the dsDNA by the enzyme, to gain access to the active site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据