4.4 Article

Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 25, 期 10, 页码 1286-1294

出版社

WILEY
DOI: 10.1002/jcc.20054

关键词

2 ',2 '-difluoro-2 '-deoxycytidine; gemcitabine; ribonucleotide reductase; RNR; mechanism; DFT

向作者/读者索取更多资源

Gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) is a very promising anticancer drug, already approved for clinical use in three therapeutic indications. It is metabolized intracellularly to 5'-diphosphate (dFdCDP), which is known to be a potent inhibitor of ribonucleotide reductase (RNR). Although several nucleotide analogs show in vitro capacity of RNR inactivation, none has shown the in vivo efficacy of dFdCDP. Accordingly, the experimental data suggests that its mechanism of inhibition is different from the other known RNR suicide inhibitors. Enzyme inhibition in the absence of reductive species leads to complete loss of the essential radical in subunit R2, and formation of a new nucleotide-based radical. Interestingly, however, the presence of the reductants does not prevent inhibition-the radical is not lost but the targeted subunit of RNR becomes R1, which is inactivated possibly by alkylation. We have conducted a theoretical study, which led us to the first proposal of a possible mechanism for RNR inhibition by dFdCDP in the absence of reductants. This mechanism turned out to be very similar to the natural substrate reduction pathway and only deviates from the natural course after the formation of the well-known disulphide bridge. This deviation is caused precisely by the F atom in the beta-face, only present in this inhibitor. The essential radical in R2 is lost, and so is the enzyme catalytic activity. The nucleotide-based radical that constitutes the end product of our mechanism has been suggested in the literature as a possible candidate for the one detected experimentally. In fact, all experimental data available has been reproduced by the theoretical calculations performed here. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据