4.7 Article

A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 341, 期 1, 页码 135-150

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.05.043

关键词

Bacillus subtilis; general stress response; sigma factors; signal transduction; serine-threonine phosphorylation

资金

  1. NIGMS NIH HHS [GM42077] Funding Source: Medline

向作者/读者索取更多资源

Activity of the general stress transcription factor sigma(B) of Bacillus subtilis is regulated directly by a partner-switching mechanism in which key protein interactions are governed by serine phosphorylation. Signals of energy or environmental stress are conveyed to sigma(B) by independent pathways, each terminating with a differentially regulated serine phosphatase, whose activity is required to control the partner-switching regulators. We present genetic and biochemical evidence that activation of the RsbU environmental signaling phosphatase is modulated by a second, atypical partner switch that comprises redundant negative regulatory proteins in a large, multicomponent signaling complex. In the current model, negative regulation of the RsbU phosphatase depends solely on the RsbS antagonist protein. Here, we perform a critical genetic test that invalidates this model and demonstrates that the RsbS antagonist alone is insufficient to prevent environmental signaling. Also required is one of a family of four co-antagonist proteins, here renamed RsbRA, RsbRB, RsbRC, and RsbRD, each with a carboxyl-terminal domain closely resembling the entire RsbS protein. Because any single member of the RsbR family, together with RsbS, was sufficient for environmental signaling, we conclude that the RsbR proteins serve as redundant co-antagonists necessary for RsbS antagonist function. Moreover, purification of RsbRA from cell extracts by nickel affinity and gel-filtration chromatography found a multicomponent complex containing the RsbRA and RsbRB co-antagonists together with the RsbS antagonist. We propose that this complex serves as a machine to transmit stress signals to sigma(B), and that the properties of the complex may contribute to environmental stress sensing. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据