4.7 Article

Transparent ultrathin conducting carbon films

期刊

APPLIED SURFACE SCIENCE
卷 256, 期 21, 页码 6186-6190

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2010.03.138

关键词

Conductive carbon films; Transparent films; Pyrolysis; Glassy carbon; Graphene; Electrochemical electrodes

资金

  1. Science Foundation Ireland
  2. Embark Initiative
  3. INSPIRE

向作者/读者索取更多资源

Ultrathin conductive carbon layers (UCCLs) were created by spin coating resists and subsequently converting them to conductive films by pyrolysis. Homogeneous layers as thin as 3 nm with nearly atomically smooth surfaces could be obtained. Layer characterization was carried out with the help of atomic force microscopy, profilometry, four-point probe measurements, Raman spectroscopy and ultraviolet-visible spectroscopy. The Raman spectra and high-resolution transmission electron microscopy image indicated that a glassy carbon like material was obtained after pyrolysis. The electrical properties of the UCCL could be controlled over a wide range by varying the pyrolysis temperature. Variation in transmittance with conductivity was investigated for applications as transparent conducting films. It was observed that the layers are continuous down to a thickness below 10 nm, with conductivities of 1.6x10(4) S/m, matching the best values observed for pyrolyzed carbon films. Further, the chemical stability of the films and their utilization as transparent electrochemical electrodes has been investigated using cyclic voltammetry and electrochemical impedance spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据