3.8 Article

A protein-protein binding assay using coated microtitre plates: increased throughput, reproducibility and speed compared to bead-based assays

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbbm.2004.04.015

关键词

binding assay; GST; pull-down; proteomics

向作者/读者索取更多资源

Protein-protein interactions, and the factors affecting them, are of fundamental importance to all biological systems. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITR) are powerful methods for assaying such interactions, but are expensive to implement. In contrast, bead-based pull-down assays using affinity tags such as glutathione-S-transferase (GST), require no specialist equipment. As a result, such assays are the most popular method for analysing protein-protein interactions, despite being time-consuming and prone to variability. In respect of these problems, we have modified this form of binding assay, using glutathione-coated 96-well plates rather than glutathione-Sepharose beads to bind the primary bait protein. Quantitation of bound protein utilises ELISA for purified proteins and scintillation counting for in vitro translated proteins, rather than the SDS-PAGE-based detection methods used in traditional bead-based assays. These modifications result in an approximately 10-fold increase in the number of samples that can be assayed daily, and allow results to be obtained within hours as opposed to days. We validate the modified assay by analysing the equilibrium binding of Munc 18 and syntaxin, and also demonstrate that association and dissociation kinetics may be measured using this approach. The method we describe is generally applicable to any protein-protein interaction assay based on affinity tags and is amenable to automation, and so should benefit a wide range of biochemical research. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据