4.4 Article

Binding affinity prediction with different force fields:: Examination of the linear interaction energy method

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 25, 期 10, 页码 1242-1254

出版社

WILEY
DOI: 10.1002/jcc.20047

关键词

binding free energies; molecular dynamics; linear interaction energy method; linear response

向作者/读者索取更多资源

A systematic study of the linear interaction energy (LIE) method and the possible dependence of its parameterization on the force field and system (receptor binding site) is reported. We have calculated the binding free energy for nine different ligands in complex with P450cam using three different force fields (Amber95, Gromos87, and OPLS-AA). The results from these LIE calculations using our earlier parameterization give relative free energies of binding that agree remarkably well with the experimental data. However, the absolute energies are too positive for all three force fields, and it is clear that an additional constant term (gamma) is required in this case. Out of five examined LIE models, the same one emerges as the best for all three force fields, and this, in fact, corresponds to our earlier one apart from the addition of the constant gamma, which is almost identical for the three force fields. Thus, the present free energy calculations clearly indicate that the coefficients of the LIE method are independent of the force field used. Their relation to solvation free energies is also demonstrated. The only free parameter of the best model is gamma, which is found to depend on the hydrophobicity of the binding site. We also attempt to quantify the binding site hydrophobicity of four different proteins which shows that the ordering of gamma's for these sites reflects the fraction of hydrophobic surface area. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据