4.7 Article

Cu-Zn-Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature

期刊

APPLIED SURFACE SCIENCE
卷 256, 期 10, 页码 3216-3223

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2009.12.008

关键词

H2S removal; Low temperature; Hydroxycarbonate precursors; Cu-Zn-Al mixed metal oxides

向作者/读者索取更多资源

One series of Cu-Zn and two series of Cu-Zn-Al hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25-100 degrees C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of Cu-Zn-Al mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7 g S/100 g-sorbent with increase of Cu/Zn molar ratio) at 40 degrees C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the Cu-Zn and Cu-Zn-Al mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS /S-2 and O-2. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS , S-2 and O-2 or exchange of HS /S-2 and O-2 during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据