4.4 Article

Fractional diffusion in plasma turbulence

期刊

PHYSICS OF PLASMAS
卷 11, 期 8, 页码 3854-3864

出版社

AIP Publishing
DOI: 10.1063/1.1767097

关键词

-

向作者/读者索取更多资源

Transport of tracer particles is studied in a model of three-dimensional, resistive, pressure-gradient-driven plasma turbulence. It is shown that in this system transport is anomalous and cannot be described in the context of the standard diffusion paradigm. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit superdiffusive scaling. To model these results we present a transport model with fractional derivatives in space and time. The model incorporates in a unified way nonlocal effects in space (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-Gaussian scaling. There is quantitative agreement between the turbulence transport calculations and the fractional diffusion model. In particular, the model reproduces the shape and space-time scaling of the pdf, and the superdiffusive scaling of moments. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据