4.4 Article

Evolution of specialists in an experimental microcosm

期刊

GENETICS
卷 167, 期 4, 页码 2015-2026

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.103.025205

关键词

-

向作者/读者索取更多资源

The impact of adaptation on the persistence of a balanced polymorphism was explored using the lactose operon of Escherichia coli as a model system. Competition in chemostats for two substitutable resources, methylgalactoside and lactulose, generates stabilizing frequency-dependent selection when two different naturally isolated lac operons (TD2 and TD10) are used. The fate of this balanced polymorphism was tracked over evolutionary time by monitoring the frequency of fhuA(-), a linked neutral genetic market that confers resistance to the bacteriophage T5. In four out of nine chemostats the lac polymorphism persisted for 400-600 generations when the experiments were terminated. In the other five chemostats the fhuA polymorphism, and consequently the lac operon polymorphism, was lost between 86 and 219 generations. Four of 13 chemostat cultures monomorphic for the lac operon retained the neutral fhuA polymorphism for 450-550 generations until they were terminated; the remainder became monomorphic at fhuA between 63 and 303 generations. Specialists on each galactoside were isolated from chemostats that maintained the fhuA polymorphism, whether polymorphic or monomorphic at the lac operon. Strains isolated from three of four chemostats in which the lac polymorphism was preserved had switched their galactoside preference. Most of the chemostats where the fhuA polymorphism was lost also contained specialists. These results demonstrate that the initial polymorphism at lac was of little consequence to the outcome of long-term adaptive evolution. Instead, the fitnesses of evolved strains were dominated by mutations arising elsewhere in the genome, a fact confirmed by showing that operons isolated from their evolved backgrounds were alone unable to explain the presence of both specialists. Our results suggest that, once stabilized, ecological specialization prevented selective sweeps through the entire population, thereby promoting the maintenance of linked neutral polymorphism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据