4.6 Article

Assessment of elastic parameters of human skin using dynamic elastography

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2004.1324402

关键词

-

向作者/读者索取更多资源

Sonoelastography and transient elastography are two ultrasound-based techniques that facilitate noninvasive characterization of the viscoelastic properties of soft tissues by investigating their response to shear mechanical excitation. Young's modulus is the principle assessment parameter. Because it defines local tissue stiffness, it is of major interest for the medical imaging and cosmetic industries as it could replace subjective palpation by yielding local, quantitative information. In this paper, we describe a new high-resolution device capable of measuring local Young's modulus in very thin layers (1-5 mm) and devoted to the in vivo evaluation of the elastic properties of human skin. It uses an ultrasonic probe (50 MHz) for tracking the displacements induced by a 300 Hz shear wave generated by a ring surrounding the transducer. The displacements are measured using a conventional cross-correlation technique between successive ultrasonic back-scattered echoes. First, this noninvasive technique has been experimentally proven to be accurate for investigating elasticity in different skin-mimicking phantoms. Second, data were acquired in vivo on human forearms. As expected, Young's modulus was found to be higher in the dermis than in the hypodermis and other soft tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据