4.4 Article

Interactions of dislocations with disconnections in fcc metallic nanolayered materials

期刊

PHILOSOPHICAL MAGAZINE
卷 84, 期 22, 页码 2277-2303

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786430410001678235

关键词

-

向作者/读者索取更多资源

Embedded-atom method potentials and atomistic models of coherent (010) interfaces were used to study slip across interfaces in cube-on-cube oriented Cu/Ni nanolayered materials. (111) disconnections form during slip across Cu-Ni interfaces and become significant barriers to continued deformation. A significant barrier exists for the flat coherent interface owing to the large coherency stresses in the Cu/Ni layers that must be overcome by applied stresses but, once these have been overcome, interface transection occurs readily. A disconnection adds an additional barrier because of a residual dislocation with a Burgers vector magnitude equal to the difference between b(Cu) and b(Ni). This barrier depends on the position of the disconnection relative to the glide plane of the transecting glide dislocation and on the disconnection height. Disconnections cause work hardening that prevents shear band formation during deformation and encourages homogeneous shear processes. Disconnection energies are shown to be relatively small and to depend on the disconnection type and size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据