4.5 Article

Learning classification in the olfactory system of insects

期刊

NEURAL COMPUTATION
卷 16, 期 8, 页码 1601-1640

出版社

MIT PRESS
DOI: 10.1162/089976604774201613

关键词

-

向作者/读者索取更多资源

We propose a theoretical framework for odor classification in the olfactory system of insects. The classification task is accomplished in two steps. The first is a transformation from the antennal lobe to the intrinsic Kenyon cells in the mushroom body. This transformation into a higher-dimensional space is an injective function and can be implemented without any type of learning at the synaptic connections. In the second step, the encoded odors in the intrinsic Kenyon cells are linearly classified in the mushroom body lobes. The neurons that perform this linear classification are equivalent to hyperplanes whose connections are tuned by local Hebbian learning and by competition due to mutual inhibition. We calculate the range of values of activity and size of the network required to achieve efficient classification within this scheme in insect olfaction. We are able to demonstrate that biologically plausible control mechanisms can accomplish efficient classification of odors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据