3.8 Article Proceedings Paper

Application of molecular-dynamics simulation to interface stabilization in thin-film devices

出版社

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/jsmeb.47.470

关键词

molecular dynamics; interface diffusion; thin film; nanotechnology

向作者/读者索取更多资源

A molecular-dynamics technique for simulating interface diffusion, which is one of the dominant factors in mechanical failures of thin-film devices, has been developed. This technique was used to find effective methods for suppressing the interface diffusion and for stabilizing interfaces. Barrier-underlayer materials effective for improving the adhesion strength with interconnect films were identified by using this technique. Ruthenium was found to be an effective underlay material for improving the adhesion with Cu interconnects. The crystal orientation of Si substrates effective for reducing atomic diffusion at interfaces between the Si substrates and high-k dielectrics (ZrO2 and HfO2) was determined. The use of Si(111) substrates was found to be effective for suppressing the formation of interfacial layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据