4.7 Article

Characterization of N,C-codoped TiO2 films prepared by reactive DC magnetron sputtering

期刊

APPLIED SURFACE SCIENCE
卷 256, 期 5, 页码 1595-1603

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2009.09.027

关键词

Titanium dioxide film; Hardness; Sputtering; Photocatalytic activity

资金

  1. National Science Council of Taiwan [NSC 96-2221-E-022-010]

向作者/读者索取更多资源

Titanium dioxide (TiO2) films are deposited by codoping nitrogen and carbon on indium tin oxide-coated substrates as visible light (Vis)-enabled catalysts. The X-ray diffraction peak intensity of the preferential orientation in (2 1 1) plane declines when the topmost 1.0 mu m layer of the film is ground off. The decrease in the crystallite size and the crystallinity of anatase TiO2 film is also evidenced by a shift towards the high wave number and broadening of the Raman spectra. Low doping concentrations of N (1.3%) and C (1.8%) are estimated by X-ray photoelectron spectroscopy (XPS) which displays an N 1s peak at 396.8 eV and a C 1s peak at 282.1 eV, respectively. This is attributed to the substitution of the oxygen sites with nitrogen and carbon, which is believed to be responsible for the Vis photocatalytic activity into a wavelength of >500 nm. The cross-sectional transmission electron microscopy images show larger pores at the grain boundaries and in larger columnar crystals than in the undoped TiO2 film. All of these results indicate that porosity, crystallinity and shift in the preferential orientation are more pronounced close to the surface than close to the bottom of the sample. Wettability upon measurement of the water contact angle, methylene blue degradation and radical formation tests under both ultraviolet and Vis irradiation demonstrate that the topmost surface renders not only a larger reactive surface area but also a better carrier transport route than the rest of the film, improving its photocatalytic activity. These results show that surface porosity of the film is dominant than the tailoring of the photocatalytic activities of N, C-codoped TiO2 catalysts. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据