3.9 Article

Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae

期刊

EUKARYOTIC CELL
卷 3, 期 4, 页码 880-892

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.3.4.880-892.2004

关键词

-

资金

  1. NIGMS NIH HHS [GM 49825, R01 GM049825] Funding Source: Medline
  2. PHS HHS [6P05 A 01221] Funding Source: Medline

向作者/读者索取更多资源

In Saccharomyces cerevisiae, the essential ceramide synthase reaction requires the presence of one of a homologous pair of genes, LAG1 and LAC1. Mutants that lack both of these genes cannot produce ceramide and exhibit a striking synthetic growth defect. While the regulation of ceramide production is critical for the control of proliferation and for stress tolerance, little is known of the mechanisms that ensure proper control of this process. The data presented here demonstrate that the pleiotropic drug resistance (Pdr) regulatory pathway regulates the transcription of multiple genes encoding steps in sphingolipid biosynthesis, including LAC]. The zinc cluster transcriptional activators Pdr1p and Pdr3p bind to Pdr1p/Pdr3p-responsive elements (PDREs) in the promoters of Pdr pathway target genes. LAC1 contains a single PDRE in its promoter, but notably, LAG1 does not. Reporter gene, Northern blot, and Western blot assays indicated that the expression level of Lac1p is approximately three times that of Lag1p. Detailed analyses of the LAC1 promoter demonstrated that transcription of this gene is inhibited by the presence of the transcription factor Cbf1p and the anaerobic repressor Rox1p. LAG1 transcription was also elevated in cbf1Delta cells, indicating at least one common regulatory input. Although a hyperactive Pdr pathway altered the profile of sphingolipids produced, the loss of either LAC1 or L4G1 alone failed to produce further changes. Two other genes involved in sphingolipid biosynthesis (LCB2 and SUR2) were found to contain PDREs in their promoters and to be induced by the Pdr pathway. These data demonstrate extensive coordinate control of sphingolipid biosynthesis and multidrug resistance in yeast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据