4.8 Article

Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization

期刊

BIOMATERIALS
卷 25, 期 17, 页码 3463-3471

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.10.051

关键词

transmission electron microscopy; microstructure; micropores; thermal spray; splat; hydroxyapatite; formation mechanism

向作者/读者索取更多资源

Microstructure of thermal sprayed hydroxyapatite (HA) splats was characterized using transmission electron microscopy (TEM), and the formation mechanisms of micropores within the splats were investigated with the aid of simulated body fluids (SBF). High-velocity oxy-fuel and direct current (DC) plasma spray techniques were both utilized for the splats' deposition. The microstructure features of individual HA splats were revealed through TEM observation of as-sprayed, and ion-milled splats. Amorphous calcium phosphate and tricalcium phosphate phases were observed at the splats' fringes, which indicated that extensive decomposition of HA had occurred at these locations. The fringes of the HA splats are essentially nanostructured (similar to 20-50 nm grains), while calcium phosphate grains up to 5mum, depending on flattening state, are present at the center of the splats. Morphological observation classified the pores within the HA splats into three main categories according to distinctive features in their microstructure: open pores, sealed pores and through-thickness pores. It was found that particle velocity with which the particle impinged on the substrate surface, particle melt state, and structure of starting particle (mainly porosity) are the key variables in determining the formation and morphology of the micropores within the flattened splats. Influence of subsequent splats on the pores of prior deposited splat was also studied using an in vitro incubation test in SBF. Obvious pore-sealing action on the open pores was revealed, which was achieved through liquid filling of subsequent droplets. It was postulated that the overall porosity of a bulk coating could be attributed primarily to the sealed pores and flaws among the splats, and, it could be adequately governed through appropriate particle melt state and optimized velocity of the particles during coating formation. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据