4.6 Article

Diacylglycerol kinase ζ regulates phosphatidylinositol 4-phosphate 5-kinase Iα by a novel mechanism

期刊

CELLULAR SIGNALLING
卷 16, 期 8, 页码 891-897

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2004.01.010

关键词

diacylglycerol kinase; phosphatidic acid; phosphatidylinositol 4-phosphate 5-kinase; phosphatidylinositol 4,5-bisphosphate; actin polymerization

向作者/读者索取更多资源

Phosphatidylinositol 4,5-bisphosphate (PIP2) plays an important role during actin polymerization and is produced by the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KI), which are activated by phosphatidic acid (PA). As diacylglycerol kinases (DGKs) generate PA by phosphorylating diacylglycerol (DAG), we investigated whether DGKs were involved in controlling PIP2 levels by regulating PIP5KI activity. Here we show that expression of DGKzeta significantly enhances PIP5KIalpha activity in thrombin-stimulated HEK293 cells, and DGK activity is required for this stimulation. We also observed that DGKzeta co-immunoprecipitated and co-localized with PIP5KIalpha, suggesting that they reside in a regulated signaling complex. To explore the role of DGKzeta in actin polymerization, we examined the subcellular distribution of DGKzeta, PIP5KIalpha and actin, and found that these proteins co-localized with actin in lamellipodial protrusions. Supporting that PIP5KIalpha regulation occurs at the sites of actin polymerization, we found that PIP2 also accumulated in the actin-rich regions of lamellipodia. Significantly, in wounding assays, DGKzeta, PIP5KIalpha and PIP2 accumulated at the leading edge of migrating A172 cells, where massive actin polymerization is known to occur. Combined, these data support a novel function for DGKzeta : by generating PA, it stimulates PIP5KIalpha activity to increase local PIP2, which regulates actin polymerization. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据