4.5 Article

Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.066845

关键词

-

资金

  1. NIAID NIH HHS [AI56456, AI30028] Funding Source: Medline
  2. NIGMS NIH HHS [GM57342] Funding Source: Medline
  3. NINDS NIH HHS [NS22153] Funding Source: Medline

向作者/读者索取更多资源

Experiments were done to help localize the minimum essential domain within the botulinum toxin molecule that is necessary for binding and transport across human gut epithelial cells. The data demonstrated that the neurotoxin alone, in the absence of auxiliary proteins, undergoes transcytosis. The neurotoxin by itself was examined in the single chain (unnicked serotype B) and dichain ( nicked serotype B, nicked serotype A) forms, and all displayed the ability to bind and penetrate epithelial barriers. In addition, the single chain and dichain molecules were examined in the oxidized and reduced states, and again all forms were transported. To further define the minimum essential domain, experiments were done with two toxin fragments: 1) the heavy chain, which was derived from native toxin, and 2) the carboxy-terminal portion of the heavy chain, which was generated by recombinant techniques. Interestingly, both fragments were fully competent in crossing epithelial barriers. These data suggest that a polypeptide derived from the toxin could be used as a carrier domain to transport other molecules across epithelial cells. In related experiments, physiological (i.e., potassium depletion) and pharmacological (i.e., chlorpromazine) manipulations were used to implicate clathrin-coated pits/vesicles as the structures responsible for endocytosis of toxin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据