4.6 Article

Loss of PKC-δ alters cardiac metabolism

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00877.2003

关键词

protein kinase C; proteomics; nuclear magnetic resonance; mouse model; metabolomics

向作者/读者索取更多资源

PKC-delta is believed to play an essential role in cardiomyocyte growth. In the present study, we investigated the effect of PKC-delta on cardiac metabolism using PKC-delta knockout mice generated in our laboratories. Proteomic analysis of heart protein extracts revealed profound changes in enzymes related to energy metabolism: certain isoforms of glycolytic enzymes, e.g., lactate dehydrogenase and pyruvate kinase, were absent or decreased, whereas several enzymes involved in lipid metabolism, e.g., phosphorylated isoforms of acyl-CoA dehydrogenases, showed a marked increase in PKC-delta(-/-) hearts. Moreover, PKC-delta deficiency was associated with changes in antioxidants, namely, 1-Cys peroxiredoxin and selenium-binding protein 1, and posuranslational modifications of chaperones involved in cytoskeleton regulation, such as heat shock protein (HSP)20, HSP27. and the zeta-subunit of the cytosolic chaperone containing the T-complex polypeptide 1. High-resolution NMR analysis of cardiac metabolites confirmed a significant decrease in the ratio of glycolytic end products (alanine + lactate) to end products of lipid metabolism (acetate) in PKC-delta(-/-) hearts. Taken together, Our data demonstrate that loss of PKC-delta causes a shift from Glucose to lipid metabolism in murine hearts, and we provide a detailed description of the enzymatic changes on a proteomic level. The consequences of these metabolic alterations on sensitivity to myocardial ischemia are further explored in the accompanying paper (20).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据