4.6 Article

Influence of initial organic N reserves and residual leaf area on growth, N uptake, N partitioning and N storage in Alfalfa (Medicago sativa) during post-cutting regrowth

期刊

ANNALS OF BOTANY
卷 94, 期 2, 页码 311-321

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mch144

关键词

Medicago sativa; defoliation; leaf area; regrowth; N uptake; N reserves; vegetative storage proteins

向作者/读者索取更多资源

Background and Aims The influence of initial residual leaf area and initial N reserves on N uptake, final N distribution, and yield in alfalfa regrowing after cutting, were studied. Methods The effects of two levels of initial residual leaf area (plants cut to 15 cm, with (L+) or without (L-) their leaves) and two initial levels of N status [high N (HN) or low N (LN)] on growth, N uptake and N partitioning, allocation and storage after 29 d of post-cutting regrowth were analysed. Key Results During most of the regrowth period (8-29 d after the initial harvest), HN and L+ plants had higher net N uptake rates than LN and L- plants, respectively, resulting in a greater final mineral N uptake for these treatments. However, the final partitioning of exogenous N to the regrowing shoots was the same for all treatments (67 % of total exogenous N on average). Final shoot growth, total plant N content, and N allocation to the different taproot N pools were significantly lower in plants with reduced initial leaf area and initial N reserve status. Conclusions Although both initial residual leaf area and initial N reserves influenced alfalfa regrowth, the residual leaf area had a greater effect on final forage production and N composition in the taproot, whereas the N uptake rate and final total N content in plant were more affected by the initial N reserve status than by the residual leaf area. Moreover, N storage as proteins (especially as vegetative storage proteins, rather than nitrate or amino acids) in the taproot allowed nitrate uptake to occur at significant rates. This suggests that protein storage is not only a means of sequestering N in a tissue for further mobilization, utilization for growth or tissue maintenance, but may also indirectly influence both N acquisition and reduction capacities. (C) 2004 Annals of Botany Company.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据