4.4 Article Proceedings Paper

Overview of the 100 mA average-current RF photoinjector

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nima.2004.04.021

关键词

FEL; photoinjector; high current; high brightness; cw; photocathode

向作者/读者索取更多资源

High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2-1/2-cell, pi-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2 1/2-cell injector can produce a 7 mum emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 mum and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 ran and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL. (C) 2004 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据