4.4 Review

Metal and inflammatory targets for Alzheimer's disease

期刊

CURRENT DRUG TARGETS
卷 5, 期 6, 页码 535-551

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389450043345272

关键词

-

资金

  1. NIA NIH HHS [AG18379, AG18884, AG21081] Funding Source: Medline

向作者/读者索取更多资源

Alzheimer's disease (AD) has become linked to inflammation and metal biology. Metals (copper, zinc and iron) and inflammatory cytokines are significant factors that increase the onset of sporadic late onset forms of the dementia. The genetic discovery that alleles in the hemochromatosis gene accelerate the onset of disease by five years [1] has certainly validated interest in the metallobiology of AD as originally described by biochemical criteria [2]. Also the presence of an Iron-Responsive Element (IRE) in the 5'UTR of the Amyloid Precursor Protein transcript (APP 5'UTR) [3] provided the first molecular biological support for the current model that APP of AD is a metaloprotein. At the biochemical level, copper, zinc and iron were shown to accelerate the aggregation of the Abeta peptide and enhance metal catalyzed oxidative stress associated with amyloid plaque formation [4]. These amyloid associated events remain the central pathological hallmark of AD in the brain cortex region of AD patients. The involvement of metals in the plaque of AD patients and the demonstration of metal dependent translation of APP mRNA have encouraged the development of chelators as a major new therapeutic strategy for the treatment of AD, running parallel to the development of a vaccine. The other notable pathological feature of AD discussed here is inflammation. The presence of neuro-inflammatory events during AD was supported by clinical trials wherein use of non steroidal anti-inflammatory drugs (NSAIDs) was shown to reduce the risk of developing AD. Drug targets that address inflammation include the use of small, molecules that prevent Abeta peptide from activating microglia, the use of cytokine suppressive anti-inflammatory drugs (CSAIDS), and the continued search for a vaccine directed to A sub-fragments (even though the full-length Abeta immunogen generated brain-inflammation and encephalitis in some patients). Our laboratory currently uses a transfection-based assay to screen for small molecule drugs that selectively suppress the capacity of the APP 5'UTR to confer expression to a downstream reporter gene. Based on the presence of both an Interleukin-1 (IL-1) responsive acute box domain and an IRE in the APP 5'UTR, we predict that our APP 5'UTR directed drug screens will identify both novel metal chelators and novel NSAIDS. These lead drugs are readily testable to measure APP holoprotein expression in a cell based secondary assay, and by use of an APP transgenic mouse. model to test potential beneficial effects of lead drug treatments on amyloid burden.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据