4.8 Article

Contractile cardiac grafts using a novel nanofibrous mesh

期刊

BIOMATERIALS
卷 25, 期 17, 页码 3717-3723

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.10.055

关键词

cardiac tissue engineering; polycaprolactone; heart; electrospinning

向作者/读者索取更多资源

Cardiomyoctes are terminally differentiated cells and therefore unable to regenerate after infarction. The use of autologous bioengineered cardiac grafts has been suggested to replace infarcted myocardium and enhance cardiac function. Here we report the development of an in vitro system for engineered myocardium. Cardiac nanofibrous meshes (CNM) were developed by culturing cardiomyocytes from neonatal Lewis rats on electrospun, nanofibrous polycaprolactone (PCL) meshes. The mesh had an ECM-like topography and was suspended across a wire ring that acted as a passive load to contracting cardiomyocytes. The cardiomyocytes started beating after 3 days and were cultured in vitro for 14 days. The cardiomyocytes attached well on the PCL meshes and expressed cardiac-specific proteins such as a-myosin heavy chain, connexin43 and cardiac troponin I. The results demonstrate the formation of contractile cardiac grafts in vitro. Using this technique, cardiac grafts can be matured in vitro to obtain sufficient function prior to implantation. It is conjectured that cardiac grafts with clinically relevant dimensions can be obtained by stacking CNMs and inducing vascularization with angiogenic factors. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据