4.4 Article

Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins

期刊

MOLECULAR GENETICS AND METABOLISM
卷 82, 期 4, 页码 312-320

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2004.06.006

关键词

nitric oxide synthase; muscular dystrophy; muscle pathology; cytoskeletal proteins

资金

  1. NIAMS NIH HHS [AR47721, AR40343] Funding Source: Medline

向作者/读者索取更多资源

Muscular dystrophy that is caused by mutation of the membrane-associated, cytoskeletal protein called dystrophin, is accompanied by loss of a dystrophin-associated protein complex (DPC) that includes neuronal nitric oxide synthase (nNOS). Previous work showed that expression of a nNOS transgene in the dystrophin-deficient, mdx mouse greatly reduces muscle membrane damage. In this investigation, we test whether expression of a nNOS transgene in wild-type or mdx muscle increases expression of DPC proteins, or functionally related proteins in the integrin complex that are upregulated. in dystrophin-deficiency, or affects expression of the dystrophin homolog, utrophin. Many members of the DPC are enriched in Western blots of cell membranes isolated from NOS transgenic muscle, compared to wild-type. Similarly, alpha7-integrin and the associated cytoskeletal proteins talin and vinculin are increased in NOS transgenic, non-dystrophic muscle. However, utrophin expression is unaffected by elevated NOS expression in healthy muscle. A similar trend in mRNA levels for these proteins was observed by expression profiling. Analysis of membrane preparations from mdx mice and NOS transgenic mdx mice shows that expression of the NOS transgene causes significant reductions in utrophin, talin, and vinculin. Expression profiling of mRNA from mdx and NOS transgenic mdx muscles also shows reduced expression of talin. Immunohistochemistry of mdx and NOS transgenic mdx muscle indicates that reduction in utrophin in NOS transgenic mdx muscle results from a decrease in regenerative fibers that express high levels of utrophin. Together, these findings indicate that the NOS transgene does not reduce dystrophinopathy by increasing the expression of compensatory, structural proteins. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据