4.5 Article

Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways

期刊

BIOPHYSICAL JOURNAL
卷 87, 期 2, 页码 733-744

出版社

CELL PRESS
DOI: 10.1529/biophysj.104.040469

关键词

-

向作者/读者索取更多资源

Many cellular signaling events occur in small subcellular volumes and involve low-abundance molecular species. This context introduces two major differences from mass-action analyses of nondiffusive signaling. First, reactions involving small numbers of molecules occur in a probabilistic manner which introduces scatter in chemical activities. Second, the timescale of diffusion of molecules between subcellular compartments and the rest of the cell is comparable to the timescale of many chemical reactions, altering the dynamics and outcomes of signaling reactions. This study examines both these effects on information flow through four protein kinase regulatory pathways. The analysis uses Monte Carlo simulations in a subcellular volume diffusively coupled to a bulk cellular volume. Diffusion constants and the volume of the subcellular compartment are systematically varied to account for a range of cellular conditions. Each pathway is characterized in terms of the probabilistic scatter in active kinase levels as a measure of noise'' on the pathway output. Under the conditions reported here, most signaling outcomes in a volume below one femtoliter are severely degraded. Diffusion and subcellular compartmentalization influence the signaling chemistry to give a diversity of signaling outcomes. These outcomes may include washout of the signal, reinforcement of signals, and conversion of steady responses to transients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据