4.2 Article

Arrays of Ni nanowires in alumina membranes:: magnetic properties and spatial ordering

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 40, 期 4, 页码 489-497

出版社

SPRINGER
DOI: 10.1140/epjb/e2004-00163-4

关键词

-

向作者/读者索取更多资源

Magnetic characteristics of arrays of Ni nanowires embedded in porous alumina are reviewed as a function of their spatial ordering. The different steps for the controlled production of highly-ordered nanowires is firstly described. Nanopores are formed into an hexagonal symmetry arrangement by self-organized process during anodization of pure Al. Parameters of the anodization allow us to control their diameter, hexagonal lattice parameter and size of crystalline domains. Subsequently, Ni nanowires are grown inside the pores by electrodeposition. Control of the pores filling and of geometrical ordering characteristics has been performed by SEM, HRSEM, RBS and AFM techniques. The magnetic characterisation of the arrays has been achieved by SQUID and VSM magnetometers, while information on the magnetic state of individual nanowires is obtained by MFM. Experimental studies are presented, particularly coercivity and remanence, for arrays with different degree of ordering (crystalline domains up to around 1 mum), and for ratio diameter to lattice parameter (diameter ranging between 20 and 180 nm, and distance between 35 and 500 nm). FMR studies have allows us to obtain complementary information of the anisotropy and magnetic characteristics. A modelling of multipolar interacting nanowires is introduced to account for the influence of short and long range ordering degree of the arrays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据